
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

A Comparative Analysis of Algorithms for the Vertex

Cover Problem

Adiel Rum - 10123004

Program Studi Matematika

Fakultas Matematika dan Ilmu Pengetahuan Alam

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 10123004@mahasiswa.itb.ac.id

Abstract—The Vertex Cover problem is a fundamental NP-

hard challenge in graph theory with significant practical

applications. This paper presents a comparative study of three

distinct algorithms for solving this problem: an exhaustive Brute-

Force search, a high-degree Greedy heuristic, and a guaranteed 2-

Approximation algorithm. Through implementation and testing

on various graph structures, this work empirically analyzes the

inherent trade-off between solution optimality and computational

efficiency. The results demonstrate that while the Brute-Force

method guarantees the minimum vertex cover, its exponential time

complexity makes it infeasible for non-trivial graphs. Conversely,

the Greedy and 2-Approximation algorithms offer polynomial-

time solutions but with different performance characteristics. The

Greedy algorithm often finds optimal or near-optimal solutions

quickly but lacks a reliable performance guarantee, whereas the

2-Approximation algorithm, while sometimes less optimal,

consistently provides a solution size provably within twice the

minimum. This investigation concludes that the selection of an

appropriate algorithm is not absolute but is contingent on the

specific application's requirements, balancing the need for

computational speed against the tolerance for sub-optimality

Keywords—Vertex Cover; Graphs; NP-Complete; Brute-Force;

Greedy; 2-Approximation

I. INTRODUCTION

In the fields of computer science and discrete mathematics,

graph theory stands as a cornerstone for modeling and

analyzing complex networks and relationships. A graph, in its

simplest form, is a collection of vertices (or nodes) connected

by edges, representing a vast array of real-world scenarios, from

social networks and transportation systems to computer

networks and molecular biology. Within this domain lies a

fundamental optimization problem known as the Vertex Cover

problem. A vertex cover is defined as a subset of a graph's

vertices such that every edge in the graph is incident to at least

one vertex within this subset. This concept is not merely a

theoretical curiosity; it has profound practical applications,

such as placing the minimum number of security cameras to

cover all hallways in a building or identifying a minimal set of

key individuals in a network to monitor for information

dissemination.

The primary challenge, however, is not just finding any

vertex cover, but finding a minimum vertex cover, that is, a

vertex cover with the smallest possible number of vertices.

Achieving this optimization is critical for efficiency and

resource conservation. The difficulty of this task is formally

captured by its classification as an NP-hard problem. This

means that as the size of the graph grows, the time required to

find the guaranteed optimal solution using any known method

increases exponentially. For large, real-world graphs, finding

the minimum vertex cover through exhaustive search becomes

computationally infeasible, pushing the limits of even the most

powerful computers.

This inherent complexity necessitates a trade-off between

optimality and efficiency, leading to the development of various

algorithmic strategies. This project, "Explorations of algorithms

to find the vertex cover of a graph," delves into this challenge

by implementing and visualizing a spectrum of these

algorithms. We will explore three distinct approaches: a Brute-

Force algorithm that guarantees optimality by exhaustively

checking every possible subset of vertices; a Greedy algorithm

that uses a simple heuristic of repeatedly selecting the vertex

with the highest degree; and a 2-Approximation algorithm that

provides a provable guarantee that its solution will be no more

than twice the size of the true minimum. To bridge the gap

between abstract theory and practical understanding, these

algorithms are integrated into an interactive visualization tool,

allowing for a step-by-step observation of how each method

traverses the graph and constructs its solution.

Through this comparative exploration and visualization, this

project aims to provide clear insights into the behavior,

performance, and trade-offs associated with different

approaches to solving the vertex cover problem. By observing

these algorithms in action, we can better appreciate the intricate

balance between computational cost and the quality of a

solution, a central theme in the study of algorithm design and

combinatorial optimization.

II. LITERATURE REVIEW

A. Vertex Cover

The Vertex Cover problem is a central and well-studied

problem in the fields of graph theory and computational

complexity. Formally, let 𝐺 = (𝑉, 𝐸) be an undirected graph,

where is the set of vertices and 𝐸 is the set of edges. A vertex

cover of 𝐺 is a subset of vertices 𝑉′ ⊆ 𝑉 such that for every

mailto:10123004@mahasiswa.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

edge (𝑢, 𝑣) ∈ 𝐸, at least one of its endpoints is included in the

subset, i.e., {𝑢, 𝑣} ∩ 𝑉′ = ∅. While any graph has several

possible vertex covers (with the set of all vertices, V, always

being a trivial one), the optimization challenge lies in finding a

minimum vertex cover. This is a vertex cover that has the

smallest possible cardinality, denoted by 𝜏(𝐺). The associated

decision problem asks, for a given graph 𝐺 and an integer 𝑘,

whether there exists a vertex cover of size at most 𝑘.

The computational difficulty of the vertex cover problem is

one of its most defining characteristics. It was famously

included in Richard Karp's list of 21 NP-complete problems in

his seminal 1972 paper, "Reducibility Among Combinatorial

Problems." The classification of a problem as NP-complete

signifies that there is no known algorithm that can solve it in

polynomial time for all inputs. Furthermore, if such an

algorithm were ever discovered for vertex cover, it would imply

that P=NP, which would resolve one of the most profound open

questions in computer science. This inherent hardness makes

finding the exact minimum vertex cover for large graphs

computationally intractable, as any known exact algorithm,

such as brute-force, has a runtime that grows exponentially with

the number of vertices. Consequently, the study of vertex cover

has largely focused on developing approximation algorithms

and heuristics that can find near-optimal solutions in a

reasonable amount of time

B. Brute Force Algorithm

The most direct approach to solving the vertex cover
problem is through a brute-force algorithm. This method is a
straightforward, exhaustive search paradigm that systematically
enumerates every possible candidate for a solution and checks
whether each candidate satisfies the problem's statement. For the
vertex cover problem, the candidates are all possible subsets of
the graph's vertex set, 𝑉. The total number of such subsets is
2|𝑉|, where |𝑉| is the number of vertices. A brute-force
implementation would generate each of these subsets and, for
each one, verify if it constitutes a valid vertex cover by checking
if every edge in the graph is covered. The algorithm would keep
track of the smallest valid cover found during this exhaustive
process.

To find the minimum vertex cover specifically, the brute-

force strategy can be refined. Instead of generating all 2|𝑉|
subsets at once, the algorithm can iterate through possible cover
sizes, 𝑘, from 0 to |𝑉|. For each 𝑘, it generates all vertex subsets
of size 𝑘 (i.e., all combinations of 𝑘 vertices) and checks if any
of them form a valid vertex cover. The first value of 𝑘 for which
a valid cover is found will correspond to the size of the minimum
vertex cover, and the corresponding subset will be an optimal
solution. While this method guarantees optimality, its runtime

complexity of 𝑂(2|𝑉|. |𝐸|) makes it practical only for very small
graphs, serving primarily as a baseline for understanding the
problem's difficulty and for verifying the correctness of more
sophisticated algorithms on small test cases.

C. Greedy Algorithm

Given the inefficiency of brute-force methods, heuristic

approaches are often employed to find good, albeit not

necessarily optimal, solutions quickly. The Greedy algorithm

for vertex cover is a prime example of such a heuristic. Its

strategy is intuitively simple: at each step, select the vertex that

covers the most uncovered edges. This means the algorithm

calculates the degree (the number of incident edges) of every

vertex in the current graph state and adds the vertex with the

highest degree to the vertex cover. After a vertex is chosen, it

and all its incident edges are removed from the graph. This

process is repeated until no edges remain.

While this greedy approach is fast and often produces

reasonably small vertex covers, it provides no guarantee of

optimality. It is possible to construct graphs where this strategy

yields a solution that is significantly larger than the minimum

vertex cover. The ratio between the size of the cover found by

the greedy algorithm and the size of the optimal cover can be as

large as 𝑂(𝑙𝑜𝑔 ∣ 𝑉 ∣). Unlike the 2-approximation algorithm, it

does not have a constant approximation ratio, meaning its

performance relative to the optimal solution can degrade as the

graph size increases. Nevertheless, its simplicity and efficiency

make it a valuable tool for obtaining a quick estimate or an

initial solution.

D. 2-Approximation Algorithm

In contrast to heuristics with no performance guarantees,
approximation algorithms offer a provable bound on the quality
of their solution relative to the optimal one. The 2-
Approximation algorithm for vertex cover is a classic and
elegant example. The algorithm operates on a simple iterative
process: as long as there are edges remaining in the graph, it
picks an arbitrary edge, say (𝑢, 𝑣), adds both of its endpoints, 𝑢
and 𝑣, to the vertex cover, and then removes both vertices and
all their incident edges from the graph. This loop continues until
all edges have been covered.

The power of this algorithm lies in its approximation ratio of
2. This means the size of the vertex cover it produces is
guaranteed to be no more than twice the size of the true
minimum vertex cover. This guarantee arises from a simple
observation: for every edge (𝑢, 𝑣) chosen by the algorithm, at
least one of its endpoints must be in any valid vertex cover,
including the minimum one. Since the algorithm adds both
endpoints, it adds at most twice as many vertices as would be
required for an optimal cover of those same chosen edges. With
a time complexity of 𝑂(|𝐸|), it provides a robust and efficient
method for finding a good-quality solution with a predictable
upper bound on its error.

III. ALGORITHM IMPLEMENTATION

A. Problem Statement

The Minimum Vertex Cover problem states: Given a graph
𝐺 = (𝑉, 𝐸), find the smallest subset of vertices 𝐶 ⊂ 𝑉 such that
every edge in 𝐸 has at least one endpoint in 𝐶. The program will
take in an undirected graph 𝐺 = (𝑉, 𝐸). Then the program will
output a list of edges, 𝐶 ⊂ 𝑉 that is the vertex cover of the graph.
That is, for every (𝑢, 𝑣) in 𝐸, then either 𝑢 or 𝑣 (or both) is in 𝐶.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Generally across the algorithms, to verify if a given 𝐶 is a
solution to the Vertex Cover problem. That is 𝐶 meets the
criteria of a vertex cover, we use the following procedure.

FUNCTION IsVertexCover(Graph G, Subset S)

INPUT: A graph G with edges E, and a subset of vertices S
OUTPUT: true if S is a vertex cover, false otherwise

FOR EACH edge (u, v) IN E:

 IF (u is NOT IN S) AND (v is NOT IN S)

THEN

 RETURN false

 END IF

END FOR

RETURN true

The complexity of this function is 𝑂(𝑚) where 𝑚 denotes the
number of edges in the graph.

B. Brute Force Implementation

1.) Problem Mapping

a. Solution space

For a graph with |𝑉| vertices, the total

number of possible subsets is 2|𝑉|. All

possible subset is a candidate for vertex

cover.

b. Generating Function

The generating function generates all

possible subsets of the vertices. The

complexity for generating all subsets is

𝑂(2|𝑉|) where |𝑉| is the number of vertices

c. Validation Function

For every subset of vertices that is generated,

The IsVertexCover function is used to verify

if the given subset is a vertex cover.

2.) Complexity Analysis

Since the algorithm generates 2|𝑉| possible solutions,

and every solution is verified in 𝑂(|𝐸|) time. The total

complexity for the brute force algorithm is 𝑂(2|𝑉||𝐸|).
3.) Implementation

The following is the pseudocode for the

implementation of the brute force algorithm.

FUNCTION BruteForceVertexCover(Graph G):

INPUT: A graph G with vertices V and edges E

OUTPUT: A minimum vertex cover V_cover
FOR k FROM 0 TO size(V):

 all_subsets_of_size_k =

generate_combinations(V, k)

 FOR EACH subset S IN

all_subsets_of_size_k:

 IF IsVertexCover(G, S) THEN

 RETURN S

 END IF

 END FOR

END FOR

RETURN an empty set

C. Greedy Implementation

1.) Problem mapping

a. Greedy Heuristic

The greedy algorithm selects the vertex with

the highest degree to cover the maximum

number of edges.

b. Solution Construction

It iteratively builds a solution by adding the

highest-degree vertex to the cover, then

removing that vertex and all its incident

edges from consideration.

c. Termination and Validity

The process repeats until no edges remain,

guaranteeing that the final set of chosen

vertices forms a valid vertex cover for the

entire graph/

2.) Complexity Analysis

The algorithm's main loop continues as long as there

are edges in the graph. In the worst case, this loop can

run |𝑉| times. Within each iteration, the most

computationally expensive task is to find the vertex

with the highest degree. This requires calculating the

degrees of all vertices by iterating through the

remaining edges, which takes 𝑂(|𝐸|) time. Therefore,

the total time complexity for this implementation of

the greedy algorithm is 𝑂(|𝑉| ⋅ |𝐸|).
3.) Implementation

The following is the pseudocode for the greedy

algorithm.

FUNCTION GreedyVertexCover(Graph G):

INPUT: A graph G with vertices V and edges E

OUTPUT: A vertex cover V_cover
V_coverV_cover = an empty set

E_remaining = a copy of E

WHILE E_remaining is not empty:

 let v_max_degree = the vertex in

V with the highest degree in the

subgraph formed by E_remaining

 add v_max_degree to V_cover

 edges_to_remove = an empty set

 FOR EACH edge (u, v) IN

E_remaining:

 IF u == v_max_degree OR v ==

v_max_degree THEN

 add edge (u, v) to

edges_to_remove

 END IF

 END FOR

 E_remaining = E_remaining -

edges_to_remove

END WHILE

RETURN V_cover

D. 2-Approximation Implementation

1.) Problem Mapping

a. Core Idea

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The algorithm is based on the principle that

for any edge (𝑢, 𝑣), a valid vertex cover must

contain either 𝑢 or 𝑣 (or both). This algorithm

conservatively includes both endpoints of a

selected edge to guarantee coverage.

b. Solution Construction

It iteratively picks an arbitrary uncovered

edge, adds both of its vertices to the cover,

and then removes all edges incident to either

of these two vertices.

c. Termination and Validity

The process repeats until no edges remain,

which ensures a valid cover. This method is a

2-Approximation algorithm, meaning the

size of the cover it produces is provably no

more than twice the size of the optimal

minimum vertex cover.

2.) Complexity Analysis

The algorithm processes each edge in the graph at

most once. The main loop continues as long as there

are uncovered edges. In each step, at least one edge is

selected and removed, along with other incident edges.

With an efficient implementation (e.g., using

adjacency lists), the total time complexity is linear in

the size of the graph, which is 𝑂(|𝑉| + |𝐸|).
3.) Implementation

The following is the pseudocode for the

implementation of the 2-Approximation algorithm.

FUNCTION TwoApproxVertexCover(Graph G):

INPUT: A graph G with vertices V and edges E

OUTPUT: A vertex cover V_cover
V_cover = an empty set

E_remaining = a copy of E

WHILE E_remaining is not empty:

 let (u, v) be an edge in

E_remaining

 add u to V_cover

 add v to V_cover

 edges_to_remove = an empty set

 FOR EACH edge (x, y) IN

E_remaining:

 IF x == u OR x == v OR y == u

OR y == v THEN

 add edge (x, y) to

edges_to_remove

 END IF

 END FOR

 E_remaining = E_remaining -

edges_to_remove

END WHILE

RETURN V_cover

IV. TESTING

A. Test Case 1

The following is the graph input for the first test case

Fig. 1. First Test Case

Brute Force Result:

Vertex Cover Size: 3

Total Steps: 32

Time Taken: 0.0002

seconds

Vertices: [1, 3, 5]

 Greedy Result:

Vertex Cover Size: 3

Total Steps: 3

Time Taken: 0.0001

seconds

Vertices: [2, 4, 6]

2-Approximation Result:

Vertex Cover Size: 6

Total Steps: 3

Time Taken: 0.0001

seconds

Vertices: [1, 2, 3, 4, 5,

6]

B. Test Case 2

The following is the graph input for the second test case.

Fig. 2. Second Test Case

Brute Force Result:

Vertex Cover Size: 2

Total Steps: 18

Time Taken: 0.0001

seconds

Vertices: [2, 3]

 Greedy Result:

Vertex Cover Size: 2

Total Steps: 2

Time Taken: 0.0001

seconds

Vertices: [2, 3]

2-Approximation Result:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Vertex Cover Size: 4

Total Steps: 2

Time Taken: 0.0000

seconds

Vertices: [2, 3, 4, 6]

C. Test Case 3

The following is the graph input for the third test case.

Fig. 3. Third Test Case

Brute Force Result:

Vertex Cover Size: 1

Total Steps: 4

Time Taken: 0.0001

seconds

Vertices: [1]

 Greedy Result:

Vertex Cover Size: 1

Total Steps: 1

Time Taken: 0.0001

seconds

Vertices: [1]

2-Approximation Result:

Vertex Cover Size: 2

Total Steps: 1

Time Taken: 0.0000

seconds

Vertices: [1, 2]

D. Test Case 4

The following is the graph input for the fourth test case.

Fig. 4. Fourth Test Case

Brute Force Result:

Vertex Cover Size: 3

Total Steps: 65

Time Taken: 0.0004

seconds

Vertices: [2, 3, 6]

 Greedy Result:

Vertex Cover Size: 3

Total Steps: 3

Time Taken: 0.0001

seconds

Vertices: [2, 3, 6]

2-Approximation Result:

Vertex Cover Size: 6

Total Steps: 3

Time Taken: 0.0001

seconds

Vertices: [1, 2, 3, 4, 6,

7]

E. Test Case 5

The following is the graph input for the fifth test case.

Fig. 5. Fifth Test Case

Brute Force Result:

Vertex Cover Size: 7

Total Steps: 2751

Time Taken: 0.0172

seconds

Vertices: [1, 2, 6, 7, 8,

9, 11]

 Greedy Result:

Vertex Cover Size: 7

Total Steps: 7

Time Taken: 0.0002

seconds

Vertices: [2, 3, 4, 6, 8,

10, 11]

2-Approximation Result:

Vertex Cover Size: 8

Total Steps: 4

Time Taken: 0.0001

seconds

Vertices: [2, 3, 4, 7, 8,

9, 10, 12]

F. Test Case 6

The following is the graph input for the fifth test case

Fig. 6. Sixth Test Case

Brute Force Result:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Vertex Cover Size: 5

Total Steps: 779

Time Taken: 0.0046

seconds

Vertices: [2, 3, 4, 5, 6]

 Greedy Result:

Vertex Cover Size: 6

Total Steps: 6

Time Taken: 0.0002

seconds

Vertices: [1, 2, 3, 4, 5,

6]

2-Approximation Result:

Vertex Cover Size: 10

Total Steps: 5

Time Taken: 0.0001

seconds

Vertices: [1, 2, 3, 4, 5,

6, 8, 9, 10, 11]

V. RESULTS DISCUSSION

TABLE I. VERTEX COVER SIZE

Test

Case

Algorithm

Brute-Force Greedy 2-Approximation

1 3 3 6

2 2 2 4

3 1 1 2

4 3 3 6

5 7 7 8

6 5 6 10

This table clearly illustrates the trade-off in solution

quality. The Brute-Force algorithm provides the benchmark for

the smallest possible cover size. The Greedy algorithm

performs exceptionally well, finding the optimal solution in 5

out of 6 cases and being off by only one vertex in the other two.

In contrast, the 2-Approximation algorithm consistently

produces larger covers, sometimes reaching its worst-case

bound of being twice the size of the optimal solution (as seen in

Test Cases 1, 2, 3, and 6), but never exceeding it.

TABLE II. TOTAL STEPS

Test

Case

Algorithm

Brute-Force Greedy 2-Approximation

1 32 3 3

2 18 2 2

3 4 1 1

4 65 3 3

5 2751 7 4

6 779 6 5

TABLE III. TIME TAKEN (SECONDS)

Test

Case

Algorithm

Brute-Force Greedy 2-Approximation

1 0.0002 0.0001 0.0001

2 0.0001 0.0001 0.0000

3 0.0001 0.0001 0.0000

4 0.0004 0.0001 0.0001

5 0.0172 0.0002 0.0001

6 0.0046 0.0002 0.0001

The computational cost difference is starkly evident

here. The "Total Steps" for the Brute-Force algorithm grows

exponentially, as seen in the jump from 65 steps in Test Case 4

to 2751 steps in Test Case 5. This highlights its inefficiency.

The Greedy and 2-Approximation algorithms remain highly

efficient, with their step counts staying low and scaling much

more gracefully with the size and complexity of the graph.

Time is the real-world manifestation of computational

steps. The execution time for the Brute-Force algorithm, while

small here, clearly increases at a much faster rate than the other

two algorithms. The Greedy and 2-Approximation algorithms

are nearly instantaneous for graphs of this size, reinforcing their

practicality for larger, more complex problems where the Brute-

Force method would take an unacceptably long time.

TABLE IV. VERTICES IN FINAL COVER

Test

Case

Algorithm

Brute-Force Greedy 2-Approximation

1 [1, 3, 5] [2, 4, 6] [1, 2, 3, 4, 5, 6]

2 [2, 3] [2, 3] [2, 3, 4, 6]

3 [1] [1] [1, 2]

4 [2, 3, 6] [2, 3, 6] [1, 2, 3, 4, 6, 7]

5
[1, 2, 6, 7, 8, 9,

11]
[2, 3, 4, 6, 10, 11]

[2, 3, 4, 7, 8, 9, 10,
12]

6 [2, 3, 4, 5, 6] [1, 2, 3, 4, 5, 6]
[1, 2, 3, 4, 5, 6, 8,

9, 10]

This table provides the qualitative data behind the

numbers. It allows us to see the different "strategies" each

algorithm took. In Test Case 1, we see that both [1, 3, 5]

and [2, 4, 6] are valid optimal solutions. In Test Case 6,

we can trace the Greedy algorithm's suboptimal choice of vertex

1, which led to a larger final cover compared to the Brute-Force

solution. This level of detail is crucial for understanding how an

algorithm arrives at its solution and why its performance varies

depending on the graph's structure.

The testing phase of this project provides a clear and

practical demonstration of the theoretical concepts governing

the vertex cover problem. By comparing the Brute-Force,

Greedy, and 2-Approximation algorithms across a variety of

graph structures, we can empirically observe the fundamental

trade-off between computational cost and solution optimality.

The results from the six test cases not only validate the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

theoretical performance guarantees and complexities of each

algorithm but also offer nuanced insights into how graph

topology influences their behavior.

A. Brute Force

Across all test cases, the Brute-Force algorithm successfully
identified the minimum vertex cover, serving as the essential
benchmark against which the other algorithms are measured. Its
strength lies in its exhaustive search, which guarantees
optimality by systematically checking every possible subset of
vertices. For instance, in Test Case 1 (a 6-cycle graph), it
correctly found a minimum cover of size 3, and in Test Case 3
(a star graph), it identified the single-vertex optimal cover.

However, the empirical data starkly illustrates the
algorithm's prohibitive computational cost, which is its defining
weakness. The Time Taken and Total Steps metrics scale
exponentially with the number of vertices (|𝑉|). This is evident
when comparing the simple 6-vertex graph in Test Case 1 (32
steps) to the more complex 12-vertex graph in Test Case 5,
which required 2751 steps and a significantly longer
computation time. While the times recorded are small on these

limited test cases, they reflect the 𝑂(2|𝑉||𝐸|) complexity. This

exponential growth renders the Brute-Force approach
computationally infeasible for all but the smallest or simplest of
graphs, reinforcing its classification as an NP-hard problem and
underscoring the necessity for more efficient heuristic and
approximation methods in practical, real-world applications.

B. Greedy

The Greedy algorithm, which iteratively selects the vertex
with the highest degree, demonstrates a fascinating and varied
performance across the test cases. Its primary allure is its speed
and simplicity, consistently outperforming the Brute-Force
method in terms of steps and time. However, its effectiveness in
finding a near-optimal solution is highly dependent on the
structure of the input graph.

However The algorithm's performance was optimal in
several instances. In Test Case 3, the star graph, the Greedy
algorithm immediately identifies the central vertex (node 1) as
the optimal one-vertex cover. This is a classic example where
the greedy heuristic excels, as covering the single, high-degree
central node is the most efficient solution. Similarly, in the tree
structure of Test Case 2 and the more complex graph of Test
Case 4, the Greedy algorithm found the optimal solution. In
these cases, the highest-degree vertices happened to be part of
an optimal vertex cover.

Conversely, Test Case 6 reveals the algorithm's potential for
suboptimal choices. The graph is a "star-of-stars" or a multi-star
graph. The central node (1) has the highest initial degree. The
Greedy algorithm selects it first. However, after removing node
1, five disconnected edges remain, forcing the algorithm to
select one endpoint from each, resulting in a total cover of size
6. The Brute-Force algorithm found a smaller cover of size 5 by
selecting the "satellite" vertices (2, 3, 4, 5, 6), which perfectly
cover all edges. This illustrates the myopic nature of the greedy
choice; selecting the vertex with the highest degree is a locally
optimal decision that does not guarantee a globally optimal
result. This aligns with the theoretical understanding that the

Greedy algorithm's approximation ratio is 𝑂(log(|𝑉|)),
meaning its solution can be significantly worse than the optimal
one as the graph grows.

C. 2-Approximation

The 2-Approximation algorithm offers a formal contract: it
will deliver a valid vertex cover that is no more than twice the
size of the minimum cover. The test results consistently uphold
this theoretical guarantee. In every single test case, a size of the
vertex cover produced by this algorithm was less than or equal
to two times the size of the optimal cover found by the Brute-
Force method

Its mechanism—picking an arbitrary edge and adding both
its vertices to the cover—is simple and fast, with a linear time
complexity of 𝑂(|𝑉| + |𝐸|). This efficiency is evident in the
low number of steps and near-instantaneous execution times.
However, the results also show that this guarantee often comes
at the cost of solution quality when compared to the Greedy
algorithm.

A "worst-case" scenario for the 2-Approximation algorithm
is vividly demonstrated in Test Case 1, the 6-cycle graph. The
optimal cover size is 3. The 2-Approximation algorithm, by
picking three disjoint edges, selects both endpoints for each,
resulting in a cover of size 6, exactly twice the size of the optimal
solution. This occurs because for each edge (𝑢, 𝑣) selected, an
optimal cover might only need one of those vertices (e.g., vertex
𝑢), but the algorithm conservatively adds both. A similar result
is seen in Test Case 3 (the star graph), where it produces a cover
of size 2 while the optimal is size 1. By picking an edge like (1,
2), it adds both nodes, where only node 1 was necessary.

This behavior highlights the trade-off inherent in this
algorithm. While it avoids the catastrophic failures that a
heuristic like Greedy could produce on certain graphs, it also
lacks the "cleverness" to identify obviously better choices. Its
strength is not in finding the best possible solution, but in
providing a reliable, efficient, and mathematically-provable
boundary on how far its solution can deviate from the true
optimum.

In conclusion, the empirical results derived from the test
cases align perfectly with the established theoretical foundations
of algorithm analysis. They confirm the NP-hard nature of the
vertex cover problem, demonstrate the practical limitations of
brute-force solutions, and provide a tangible comparison of
heuristic and approximation strategies. The visualization and
testing have successfully bridged the gap between abstract
complexity theory and the concrete performance of algorithms,
offering clear insights into the crucial balance between speed,
resource consumption, and the quality of a final solution.

VI. CONCLUSION

This investigation into the Vertex Cover problem

through the implementation and testing of Brute-Force, Greedy,

and 2-Approximation algorithms successfully demonstrated the

fundamental trade-off between solution optimality and

computational efficiency. The empirical results confirmed that

while the Brute-Force method guarantees a minimum vertex

cover, its exponential complexity renders it impractical for all

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

but the smallest graphs. In contrast, both the Greedy and 2-

Approximation algorithms provide efficient, polynomial-time

alternatives, though with differing strengths: the Greedy

heuristic often yields optimal or near-optimal results but lacks

a performance guarantee, whereas the 2-Approximation

algorithm, while sometimes producing larger covers, provides

a reliable and mathematically-proven upper bound on its

solution size. Ultimately, the findings establish that the optimal

choice of algorithm is not absolute but is contingent on the

specific application's tolerance for sub-optimality versus its

need for performance guarantees, clearly illustrating the

practical implications of theoretical computer science

principles.

VII. APPENDIX

VIDEO LINK AT YOUTUBE

The link to the YouTube video can be found in the following:

https://www.youtube.com/watch?v=bvgVjbuS1gY

ACKNOWLEDGMENT

The Author would formally thank:

1. Allah SWT. The almighty that has given me strength to
finish this paper

2. Nur Ulva Maulidevi and Rinaldi Munir for being an
amazing lecturer for the IF2211 Course

3. All other parties the author can’t list one by one.

REFERENCES

The source code for the program referenced above can be

found in the following GitHub Repository:

https://github.com/adielrum/Makalah_10123004.git

[1] Munir, R. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/04-Algoritma-Greedy-(2025)-Bag1.pdf . Diakses pada 24 Juni
2025.

[2] Munir, R. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/05-Algoritma-Greedy-(2025)-Bag2.pdf . Diakses pada 24 Juni
2025.

[3] Munir, R. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/06-Algoritma-Greedy-(2025)-Bag3.pdf . Diakses pada 24 Juni
2025.

[4] Munir, R. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf. Diakses pada 24 Juni
2025.

[5] Munir, R. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/03-Algoritma-Brute-Force-(2025)-Bag2.pdf. Diakses pada 24 Juni
2025.

[6] Chen, Jianer, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for
vertex cover." Theoretical Computer Science 411.40-42 (2010): 3736-
3756.

[7] Chen, Jianer, Iyad A. Kanj, and Weijia Jia. "Vertex cover: further
observations and further improvements." Journal of Algorithms 41.2
(2001): 280-301.

[8] Chen, Jianer, Iyad A. Kanj, and Ge Xia. "Improved upper bounds for
vertex cover." Theoretical Computer Science 411.40-42 (2010): 3736-
3756.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 24 Juni 2025

Adiel Rum - 10123004

https://www.youtube.com/watch?v=bvgVjbuS1gY
https://github.com/adielrum/Makalah_10123004.git

